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We study the behavior of the optimal path between two sites separated by a distance r on a d-dimensional
lattice of linear size L with weight assigned to each site. We focus on the strong disorder limit, i.e., when the
weight of a single site dominates the sum of the weights along each path. We calculate the probability
distribution P��opt �r ,L� of the optimal path length �opt, and find for r�L a power-law decay with �opt,
characterized by exponent gopt. We determine the scaling form of P��opt �r ,L� in two- and three-dimensional
lattices. To test the conjecture that the optimal paths in strong disorder and flow in percolation clusters belong
to the same universality class, we study the tracer path length �tr of tracers inside percolation through their
probability distribution P��tr �r ,L�. We find that, because the optimal path is not constrained to belong to a
percolation cluster, the two problems are different. However, by constraining the optimal paths to remain inside
the percolation clusters in analogy to tracers in percolation, the two problems exhibit similar scaling properties.
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I. INTRODUCTION

Flow in porous media, due to its ubiquitous nature, has
received a great deal of attention in recent decades �1–5�.
Interest has been driven by multiple real-world problems
such as oil extraction �4,5� and ground water pollution �6,7�.
Porous media is typically simulated through percolation sys-
tems �8�, and flow through a variety of models ranging from
the idealized ant in a labyrinth �9� to the very practical ones
such as convective tracer flow �5,10,11�.

In the study of flow in percolation clusters, it has been
hypothesize that transport properties may be related to some
geometric property of the cluster. However, despite consid-
erable effort �1� such a geometric property relation has not
been found �2�. Here, we argue that, for the particular case of
convective tracer flow in percolation clusters, a connection
exists between transport properties and the static properties
of a model of optimal paths in disordered lattices, described
in detail below. This relation allows for a mapping between
the two problems that opens new approaches for their study.

The first hint of a possible connection between flow in
porous media and the optimal path problem arouse in the
work of Lee and co-workers �12�. This reference deals with a
simplified model of flow in porous media related to second-
ary oil extraction, in which an invading fluid �water, steam,
etc.� injected at A pushes oil out through extraction well B.
This method is used when the oil reservoir does not have
enough pressure to be exploited without this added driving
pressure. The system is considered in the following way: the
medium is modeled by a percolation cluster at the critical
threshold density, and a steady state laminar flow of an in-
compressible fluid is established between A and B. Then,
tracers which mimic the flow of the driving fluid are injected
at A and travel purely by convection to B �Sec. III�. The
tracer length ��tr� probability density function �PDF�, P��tr�,
was measured and it was found that the most probable trav-

eling length �tr
*, defined as the value of �tr for which P��tr� is

maximum, scales with the distance r between the injection
and extraction sites A and B as

�tr
* � rdtr �dtr = 1.21 ± 0.02 for d = 2� . �1�

The remarkable feature of Eq. �1� is that, for d=2, the expo-
nent dtr�dopt, where dopt is the exponent for the optimal path
length in the strong disorder limit as defined by Cieplak and
co-workers �13,14� �see below�. In this study, we propose
that transport in percolation can be directly related to the
optimal path in strong disorder, and we support our proposal
with extensive numerical simulations for d-dimensional lat-
tices with d=2 and 3.

The optimal path problem formulated by Cieplak and
co-workers in Ref. �13� is that of finding the path of lowest
cost to go from one end of a d-dimensional lattice to the
other end when to each site �or bond� i, we associate a
weight �i=eaxi, with xi� �0,1�. This is equivalent to choos-
ing �i from the distribution

W��� =
1

a�
� � �1,exp a� . �2�

The energy of any path of length � on the lattice is given by
the sum

E � 	
j

�

� j , �3�

where j is an index running over the sites of the path. The
limit a→� is known as the strong disorder limit. The opti-
mal path of length �opt is the path for which E is minimal
with respect to all other paths. The optimal path length scales
with r as �13�
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�opt � rdopt �dopt = 1.22 ± 0.01� . �4�

The first reference that we have found to this problem, al-
though formulated in a different context, is that of Ambe-
gaokar and co-workers �15�, where the metal-insulator tran-
sition is considered by a percolation model in which sites
represent possible electron states which can be reached only
by hopping through quantum tunneling, and the hopping
rates are exponential, motivating Eq. �2�. Another context in
which these weights have been observed is that of magne-
toresistance in thin Ni films �16�.

Our work can be equated to the following question: is
flow in percolation clusters, a dynamical process, connected
to the optimal path length in strong disorder, a static prop-
erty, as suggested by the similarity of Eqs. �1� and �4�? To
this end, we study the PDF P��opt �r ,L� for the optimal path
to have a length �opt, given a system size L, and an Euclidean
distance r between the starting and ending sites A and B of
the path. We will compare this PDF with P��tr �r ,L�, the PDF
that convective tracer paths have a length �tr in a percolation
system of size L at criticality, where the starting and ending
sites are at a distance r.

There are some indications that this connection is indeed
present, given that other relations between percolation and
strong disorder optimal paths have been reported. For in-
stance, for a lattice with disorder given by Eq. �2� in the
strong disorder limit, the most probable largest weight of the
site used by the optimal path is eapc, where pc is the perco-
lation threshold �14�. Also, Wu and co-workers �17� recently
determined through the study of tracer flow on a lattice with
disorder, that the strong disorder limit has a length scale that
scales as a�, where � is the connectedness exponent of per-
colation �3�, and hence a system is in the strong disorder
limit only when a��L. In this paper, we study the ultramet-
ric limit a→�.

In Sec. II we present results for the distribution
P��opt �r ,L�. In Sec. III, results for P��tr �r ,L� are presented
and compared with P��opt �r ,L�. We then discuss the results
in Sec. IV.

II. OPTIMAL PATH DISTRIBUTION

To study P��opt �r ,L� we use the “bombing algorithm”
proposed in Ref. �13�. The optimal path length �opt between
sites A and B is found by eliminating �bombing� sites of the
lattice in decreasing order of weight, but leaving those sites
necessary to keep A and B connected. When all sites that do
not disconnect A and B are eliminated, only the sites of the
optimal path remain �18–20�.

In Fig. 1 we present P��opt �r ,L� for r�L for a square
lattice of sites. Four distinct features appear:

�1� The most probable optimal path length �opt
* scales

with r as

�opt
* � rdopt. �5�

The values of dopt have been reported for several lattice
dimensions d, and also have been shown to be universal
�21�. Here, we rescale P��opt �r ,L� with the exponent dopt,
calculated elsewhere for the average optimal path length

FIG. 1. �a� Distribution P��opt �r ,L� for r=4 and system sizes
L=64,, 128, and 256. As L increases, the power law region with
exponent gopt becomes better defined, and the upper cutoff in-
creases. �b� Probability distribution P��opt �r ,L� for �r=8,L=64�
�solid line�, �r=16,L=128� �dashed line�, and �r=32,L=256� �dot-
ted line� for two-dimensional systems. The ratio between L and r is
kept fixed for these curves. �c� Scaled distribution rdoptP��opt �r ,L�
vs scaled optimal path length �opt /rdopt for the curves in �b�. The

collapse has been achieved using the exponent dopt reported for �̄opt,
which is also valid for the most probable length �opt

* as evidenced in
the plot.
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�̄opt, but, as Figs. 1�a� and 1�b� show, dopt also produces
the correct scaling for �opt

* . Our results for dopt are reported
in Table I for d=2 and 3.

�2� A lower cutoff �Fig. 1�b�� which, in analogy with the
distribution of minimal paths in percolation �4,22,23�, is ex-
pected to be a stretched exponential function f1 of the form

f1�x� = exp�− �x−�opt� 
x �
�opt

rdopt
� , �6�

where � is a lattice-dependent constant, and �opt is a univer-
sal exponent satisfying �21,22�

�opt =
1

dopt − 1
. �7�

�3� An upper cutoff due to the effect of the finite lattice
size L. A stretched exponential behavior is also expected to
describe this region �4,19,23�, through a function f2 of the
form

f2�y� = exp�− �y	opt� 
y �
�opt

Ldopt
� , �8�

where � is a lattice-dependent constant, and 	opt has univer-
sal properties �4,19,23�.

�4� A power-law region described by

P��opt� � �opt
−gopt �rdopt 
 �opt � Ldopt� . �9�

The above considerations lead us to postulate for
P��opt �r ,L� a full scaling ansatz �4,21–23�

P��opt�r,L� �
1

rdopt
� �opt

rdopt

−gopt

f1� �opt

rdopt

 f2� �opt

Ldopt

 , �10�

where the prefactor 1 /rdopt is necessary for normalization.
We have tested this ansatz for d=2,3 and found it to be
consistent with our earlier simulations �21�.

An interesting feature of P��opt �r ,L� is that, as d in-
creases, gopt decreases. In other words, the longer optimal
paths at larger dimensions have a larger probability �see

Table I�. Additionally, since gopt
2 for all d, �̄opt and all
higher moments diverge as L→�.

To calculate the exponents �opt and 	opt of Eqs. �6� and
�8�, we introduce the function

�� �opt

rdopt
,
,A
 � ln� A

P��opt�r,L�rdopt� �opt

rdopt

gopt� �11�

which, upon using Eqs. �6�, �8�, and �10� yields

�� �opt

rdopt
,
,A
 � ln� A

f1� �opt

rdopt

 f2� �opt

rdopt

−dopt
� � ln A

+ �� �opt

rdopt

−�opt

+ �� �opt

rdopt

−dopt
	opt

.

�12�

We have made use of 
�L /r in the argument of the function
f2 so that f2��opt /Ldopt�= f2�
−dopt�opt /rdopt�. The constant A is
an auxiliary parameter chosen to make the minimum value of
� slightly larger than unity. Defining x��opt /rdopt, we show
in Fig. 2 ��x ,
 ,A� for d=2 and the fit lines for the expo-
nents of both f1 and f2, which are reported in Table I. The

TABLE I. Exponents characterizing P��opt �r ,L� and P��tr �r ,L�, which are defined in the text. The value
of gopt is determined from P��opt �r=4,L=256� in Fig. 1�a�, for which the power-law region is the longest.
The values of �opt and 	opt are from Fig. 2.

Optimal path in strong disorder �“Static”�

d dopt gopt �opt �calculated� �opt =
1

dopt − 1 	opt �calculated�

2 1.22±0.01 �13,21� 1.55±0.05 4.8±0.5 4.55±0.21 5.3±0.3

3 1.42±0.02 �27� 1.37±0.05 2.1±0.1 2.3±0.1 4.3±0.3

Optimal path in strong disorder inside percolation �“Modified static”�

2 1.21±0.02 1.82±0.05 4.9±0.4 4.76±0.45 2.3±0.4

3 1.40±0.03 2.2±0.1 2.0±0.1 2.5±0.2 3.6±0.2

Tracer path �“dynamic”�

d dtr gtr �tr �calculated� �tr =
1

dtr − 1 	tr �calculated�

2 1.21±0.02 �12� 1.82±0.05 4.7±0.4 4.76±0.45 2.7±0.2

3 1.37±0.05 2.23±0.09 1.81±0.02 2.7±0.4 3.46±0.04
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values of �opt we calculate are close to the values predicted
by Eq. �7� for d=2,3.

III. COMPARISON BETWEEN FLOW IN PERCOLATION
AND THE OPTIMAL PATH

We now study the PDF P��tr �r ,L� with the purpose of
comparing it to P��opt �r ,L�, and analyze the detailed condi-
tions under which optimization and flow in percolation oc-
cur. Our analysis �see Sec. IV� explains the differences we
observe, and also the “right way” in which the two problems
become equivalent.

Since simulations for flow on percolation clusters are per-
formed, we describe the two-dimensional case of the algo-
rithm �5�. We represent the reservoir as a two-dimensional
site percolation cluster, and choose sites at �−r /2 ,0� and
�r /2 ,0�, denoted by A and B, respectively, to be the injection
and extraction well positions. Points A and B are separated
by a geometric distance r, and the system box has corners at
�±L /2 , ±L /2�. We construct percolation clusters at pc using
the Leath algorithm �24�.

To model tracer motion we use the analogy with electrical
circuits, where for each bond, the pressure drop corresponds
to the voltage difference, and the flow corresponds to the
electrical current on the bond. A pressure difference between
sites A and B drives the tracer. For each realization, 104

tracers are introduced at site A, and then collected at site B.
The set of all sites through which there is a nonzero current
defines the cluster backbone of MB sites.

The “pressure” difference across bonds is equivalent to a
“voltage” difference, so by solving Kirchhoff’s equations on
the backbone, we obtain the potential �pressure� drops �V
over all bonds for a given realization. Due to the nature of
the model, no turbulence or other complex fluid flow effects
are considered, which is equivalent to assuming laminar flow

inside the system. Additionally, given that the bonds have
vanishing radius, the tracer flow “perfectly mixes” at the
nodes. For site i having si outgoing bonds, the tracer selects
a bond with a probability

wij �
�Vij

	 j
�Vij

�j = 1, . . . ,si;i = 1, . . . ,MB� . �13�

For incoming bonds, wij =0. This guarantees that the tracer
dynamics is completely convective, i.e., with infinite Péclet
number �25,26�. The total traveling length of a tracer is the
number of bonds of the path connecting A and B, chosen by
this tracer. Since the particles do not interact with one an-
other, it is equivalent to launching one particle at a time into
the cluster. This procedure is known as particle launching
algorithm �10,11�. We determine the probability distribution

FIG. 2. The scaling function ��x ,
 ,A� for A=0.1 vs the scaled
optimal path length x��opt /rdopt for system sizes �r=8,L=64�,
�r=16,L=128�, and �r=32,L=256�. The two straight lines serve as
guides to the eye for the data that determine the exponents �opt and
	opt.

FIG. 3. Probability distribution P��tr �r ,L� for r=2 and L=128
in d=2 and d=3. In a similar fashion as for P��opt �r ,L� we see a
power-law region that we characterize by exponent gtr. Another
feature of this plot is the increasing steepness of P��tr �r ,L� as d
increases �implying gtr increases with d�, a feature for which
P��opt �r ,L� has the opposite behavior, as gopt decreases with d.

FIG. 4. The power-law tails of P��tr �r ,L� �solid� and
P��opt �r ,L� �dashed� in d=2 and 3. The upper pair is for d=2 with
L=256 and r=4. The lower pair is for d=3 with L=128 and r=2.
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of the tracer traveling lengths P��tr �r ,L� by counting the
number of particles that travel from site A to site B along a
path of length �tr, over all the particles and all realizations of
the percolation cluster.

The form of P��tr �r ,L� for the two-dimensional case was
suggested in �12�. Here, we extend these results to d=3 �Fig.
3�. Once again, the power law and stretched exponential be-
haviors are present. The scaling of the most probable tracer
path length is given by �tr

* �rdtr. These results yield

P��tr�r,L� �
1

rdtr
� �tr

rdtr

−gtr

h1� �tr

rdtr

h2� �tr

Ldtr

 , �14�

where functions h1 and h2 have the forms

h1�z� = exp�− �z−�tr� 
z �
�tr

rdtr
� , �15�

and

h2�u� = exp�− �u	tr� 
u �
�tr

Ldtr
� . �16�

Arguments similar to those leading to Eq. �12� indicate how
to determine the exponents �tr and 	tr, reported in Table I.

The power-law region is characterized by the exponent
gtr, which is different from gopt �see Table I�. We present in
Fig. 4 curves for the power-law regime for both P��tr �r ,L�
and P��opt �r ,L� in d=2 and 3. In Table I we see the differ-
ence in the slope of the power-law decay between P��tr �r ,L�
and P��opt �r ,L�. Moreover, as d increases, gopt decreases and
gtr increases, indicating the differing behaviors for the two
problems. In the next section, we explain the origin of the
differences, how these differences can be removed, and un-
der which conditions the two problems coincide.

IV. DISCUSSION

The numerical results presented above show the differ-
ence in the values of the scaling exponents gopt and gtr of the
distributions. To understand these differences, we now elabo-
rate on the characteristics of the optimal path problem in
comparison to those of tracer paths in percolation.

In Fig. 5�a� we represent the optimal path in strong disor-
der, where the dark areas represent regions with site weights
�i=eaxi with xi� pc, and the white areas regions with site
weights �=eaxi with xi� pc. Typically, the arbitrary choice of
A and B may lead to a path connecting them that requires
visiting regions with site weights ��eapc. In contrast, the
tracers inside percolation clusters must, by definition, travel
on the same percolation cluster �spanning or otherwise�, be-

FIG. 5. �Color online� �a� Schematic of occupied sites for p
below the percolation threshold pc, and the optimal path in strong
disorder. The darker regions represent sites that are still present
when pc is reached. We see in this case that �opt must cross the
region above pc �i.e., leave the cluster� to connect A and B. �b� If
sites A and B are chosen within the a cluster below pc, the optimal
path does not leave the cluster because that would increase the cost.

FIG. 6. Comparison of P��opt �r ,L� inside percolation with
P��tr �r ,L� for �r=16,L=64�, �r=32,L=128� and �r=64,L=256�.
The solid lines represent the optimal path distribution, and the long
dashed lines the tracer length distributions. The values of r and L
have a fixed ratio equal to L /r=4. The similarity between distribu-
tions is clear, supporting our hypothesis. The small separation along
the horizontal axis between P��opt �r ,L� and P��tr �r ,L� �consistent
for the three pairs of curves� is due to nonuniversal details of the
two models.
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cause the flow takes place only if there is a percolating path
between A and B. Therefore, this difference between the flow
and optimal path problems presents a possible explanation
for the differences between P��opt �r ,L� and P��tr �r ,L�. Op-
timal paths tend to be longer because they are able to visit
more sites of the lattice and are therefore of longer length,
whereas tracers in percolation flow are confined to a given
cluster, and their traveling lengths are much more limited.
These features intuitively explain why gtr is larger than gopt.

The above considerations lead to the following hypoth-
esis: if the optimal path search is constrained to pairs of sites
within regions of the lattice that are part of the same cluster
�Fig. 5�b��, then the scaling of P��opt �r ,L� and P��tr �r ,L�
would coincide. To test this, we present P��opt �r ,L� and
P��tr �r ,L� in Fig. 6, where the optimal paths satisfy the con-
dition that their highest weight is at or below percolation.
This condition forces the optimal paths to be inside percola-

tion clusters. Indeed, for this case �Fig. 6�, the two quantities
exhibit very similar behavior, supporting our hypothesis. The
exponent gopt inside percolation now becomes very close to
gtr. On the other hand, dopt does not change, confirming the
equivalence of the two problems. We also have similar re-
sults for three-dimensional lattices.

In summary, we have shown that P��opt �r ,L� has a power-
law tail with an exponent gopt which decays as d grows and is
different from the power-law tail of P��tr �r ,L�. This differ-
ence seems to be related to the fact that the optimal path
crosses percolation clusters and thus tends to have longer
lengths compared with tracers which are always inside per-
colation clusters. When �opt is measured only inside percola-
tion clusters, our results suggest P��opt �r ,L� and P��tr �r ,L�
are equivalent and the two problems possibly belong to the
same universality class.
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